超星副教授

办公电话:010-62784497

电子邮箱:chaox6@tsinghua.edu.cn; chaox6@gmail.com

通讯地址:清华大学李兆基科技大楼B-537(邮编100084)

邮编:100084


教育背景

09/2007-01/2013 美国斯坦福大学机械工程系 / 电子工程系博士

08/2005-07/2007 清华大学精密仪器与机械学系光学工程专业硕士

09/2003-07/2005 法国巴黎中央理工大学工程师学位(Diplôme d’Ingénieur

09/2001-07/2005 清华大学精密仪器与机械学系测控技术与仪器专业学士

工作履历

12/2021-至今  清华大学燃烧能源中心/能源与动力工程系,副教授

12/2015-11/2021 清华大学燃烧能源中心/能源与动力工程系,助理教授/特别研究员

01/2013-12/2015 美国Oxigraf Inc.气体分析仪器公司,首席科学家

02/2014-02/2015 美国斯坦福大学高温气体动力实验室,访问学者

09/2007-01/2013 美国斯坦福大学高温气体动力实验室,助研、助教

08/2005-07/2007 清华大学光子与电子技术研究室,助研

研究领域

激光光谱学;激光诊断;燃烧诊断;气体传感技术/原位气体分析技术;测量仪器及系统开发。

学术成果

期刊论文

[1] Wang Z, Zhu N, Wang W, Chao X. Y-Net: a dual-branch deep learning network for nonlinear absorption tomography with wavelength modulation spectroscopy. Optics Express. 2022;30:2156-72.

[2] Wang Z, Wang W, Ma L, Fu P, Ren W, Chao X. Mid-infrared CO2 sensor with blended absorption features for non-uniform laminar premixed flames. Applied Physics B-Lasers and Optics. 2022;128.

[3] Yu Z, Dongmei W, Xiaoliang C, Xing C, Haitao X. Uniform breaking of liquid-jets by modulated laser heating. Physics of Fluids. 2021;33:044115 (14 pp.).

[4] Wang W, Wang Z, Chao X. Gaussian process regression for direct laser absorption spectroscopy in complex combustion environments. Optics Express. 2021;29:17926-39.

[5] Song Z, Wang W, Zhu N, Chao X. Gas velocimetry based on infrared laser-induced fluorescence. Physics of Fluids. 2021;33.

[6] Song Z, Chao X. Vibrational energy transfer kinetics for quantitative species diagnostics using infrared laser-induced fluorescence. Combustion and Flame. 2021;224:196-208.

[7] Wang Z, Fu P, Hou L, Chao X. Diffuse-reflection-based single-ended laser absorption sensor for H2O temperature and concentration in kerosene-fuelled combustor. Measurement Science and Technology. 2020;31.

[8] Wang Z, Fu P, Chao X. Baseline reduction algorithm for direct absorption spectroscopy with interference features. Measurement Science and Technology. 2020;31.

[9] Wang Z, Fu P, Chao X. Laser Absorption Sensing Systems: Challenges, Modeling, and Design Optimization. Applied Sciences-Basel. 2019;9.

[10] Chao X, Shen G, Sun K, Wang Z, Meng Q, Wang S, et al. Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization. Proceedings of the Combustion Institute. 2019;37:1345-53.

[11] Shen G, Chao X, Sun K. Modeling the optical field in off-axis integrated-cavity-output spectroscopy using the decentered Gaussian beam model. Applied Optics. 2018;57:2947-54.

[12] Sun K, Wang S, Sur R, Chao X, Jeffries JB, Hanson RK. Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy. Optics Express. 2014;22:9291-300.

[13] Sun K, Wang S, Sur R, Chao X, Jeffries JB, Hanson RK. Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 mu m. Optics Express. 2014;22:24559-65.

[14] Sun K, Sur R, Chao X, Jeffries JB, Hanson RK, Pummill RJ, et al. TDL absorption sensors for gas temperature and concentrations in a high-pressure entrained-flow coal gasifier. Proceedings of the Combustion Institute. 2013;34:3593-601.

[15] Sun K, Chao X, Sur R, Jeffries JB, Hanson RK. Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing. Applied Physics B-Lasers and Optics. 2013;110:497-508.

[16] Sun K, Chao X, Sur R, Goldenstein CS, Jeffries JB, Hanson RK. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers. Measurement Science and Technology. 2013;24.

[17] Chao X, Jeffries JB, Hanson RK. Development of laser absorption techniques for real-time, in-situ dual-species monitoring (NO/NH3, CO/O2) in combustion exhaust. Proceedings of the Combustion Institute. 2013;34:3583-92.

[18] Chao X, Jeffries JB, Hanson RK. Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 mu m laser absorption sensor. Applied Physics B-Lasers and Optics. 2013;110:359-65.

[19] Chao X, Jeffries JB, Hanson RK. Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 mu m quantum-cascade laser. Applied Physics B-Lasers and Optics. 2012;106:987-97.

[20] Chao X, Jeffries JB, Hanson RK. In situ absorption sensor for NO in combustion gases with a 5.2 mu m quantum-cascade laser. Proceedings of the Combustion Institute. 2011;33:725-33.

[21] Wang F, Cen KF, Li N, Huang QX, Chao X, Yan JH, et al. Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser. Flow Measurement and Instrumentation. 2010;21:382-7.

[22] Chao X, Jeffries JB, Hanson RK. Absorption sensor for CO in combustion gases using 2.3 mu m tunable diode lasers. Measurement Science and Technology. 2009;20.

发明专利及软件著作

[1] 超星; 王振海; 王巍添; 陈小亮; 符鹏飞; 基于深度学习的波长调制吸收光谱层析重建系统, 2021-11-17, 中国, CN202111362939.9

[2] 超星; 王振海; 王巍添; 侯凌云; 符鹏飞; 陈小亮; 朱宁; 宋子豪; 一种基于气体吸收光谱的单端漫反射多组分测量系统, 2021-9-17, 中国, CN202111091111.4

[3] 侯凌云; 符鹏飞; 超星; 一种受限空间设备内温度和组分集成化在线测量系统, 2021-02-05, 中国, CN202110159754.1

[4] 曹汛; 张焱; 刘征宇; 蔡李靖; 陈小亮; 超星; 索津莉; 戴琼海; 一种实时的多光谱层析拍摄方法和装置, 2022-02-08, 中国, CN112229827B

[5] Ronald K. Hanson, Jay B. Jeffries, Kai Sun, Ritobrata Sur, Xing Chao, "A method for calibration-free scanned-wavelength-modulation spectroscopy for gas sensing," 美国, PCT/US2012/070523, Stanford Docket Number S11-403.

[6] 巩马理; 闫平; 超星; 李晨; 一种在光纤放大器或激光器中避免严格控制泵浦波长的方法及产品, 2010-12-01, 中国, CN101281338B

[7] 巩马理; 闫平; 超星; 李晨; 一种自种子超辐射光纤放大方法及放大装置, 2007-03-23, 中国, CN200710064755.8

[8] 程博; 乔文生; 宫秀良; 徐艳玲; 超星; 王振海; 王巍添; 陈小亮; 固体火箭发动机燃烧喷焰温度及组分测试软件, 2021-11-02, 中国, 2021SR1612113