Zhou HuiAssociate Professor

Tel: 010-62773188

Email: huizhou@tsinghua.edu.cn

Address: Department of Energy and Power Engineering, Room A218, Tsinghua University, Beijing 100084, China

Education background

2010/09-2015/07, Ph.D., Department of Thermal Engineering, Tsinghua University, China

2013/11-2014/04, Visiting Student, University of Leeds, UK

2006/08-2010/07, Bachelor, Department of Thermal Engineering, Tsinghua University, China

Working Experience

2023/06-present, Associate Professor, Department of Energy and Power Engineering, Tsinghua University, China

2021/07-2023/06, Assistant Professor, Department of Energy and Power Engineering, Tsinghua University, China

2018/10-2021/05, Marie Skłodowska-Curie Individual Fellow, Department of Mechanical and Process Engineering, ETH Zurich, Switzerland

2017/07-2018/09, Postdoctoral Research Associate, Ames Laboratory of the US Department of Energy, USA

2015/09-2017/07, Postdoctoral Research Scientist, Department of Earth and Environmental Engineering, Columbia University, USA

Concurrent Academic

Vice Chair, International Association on Carbon Capture (IACC)

Executive Editor, Carbon Capture Science and Technology (Elsevier)

Editorial Board Member, Advances in Applied Energy

Advisory Board Member, Materials Today Sustainability (Elsevier)

Guest Editor, Applied Energy

Associate Editor, Frontiers in Energy Research

Youth Board Member, Green Energy & Environment

Member, American Chemical Society (ACS)

Associate Member, Royal Society of Chemistry (RSC)

Grant Reviewer, European Commission Research Executive Agency

Conference Chair, Session of Biomass to Energy, Chemicals, and Functional Materials, 256th American Chemistry Society National Meeting

Conference Chair, International Conference on Carbon Capture Science and Technology 2023

Vice Secretary, The 10th International Symposium on Coal Combustion (ISCC)

Assessment Expert, Evaluator for the Classification of High-Quality Journals in the Field of Environmental Science

Expert in the Expert Think Tank of the Basel Convention Regional Centre for Asia and the Pacific

Social Service

2024/08-present, Associate Director of the Academic Affairs Office of Tsinghua University (on secondment)

2022/04-present, Director of the Teaching Office in the Department of Energy and Power Engineering at Tsinghua University

Research Interests

Main research inerests on carbon-neutrality technologies and renewable energy utilization technologies:

· Biomass/waste utilization: biomass/waste (hydrothermal) liquifaction/pyrolysis/gasification, lignin chemistry

· Carbon capture and conversion: In-situ carbon capture and sorbent enhanced hydrogen production, bifunctional sorbent-catalyst materials (BSCMs), CO2 hydrogenation, dry reforming

· Renewable hydrogen production and storage: steam reforming, hydrogen storage in methanol

· Heterogeneous catalysis in energy conversion reactions: application of 2D materials in catalysis, in-situ characterization

Teaching

“Carbon Neutrality and Carbon Cycle”, 32 teaching units, in English

“Heat Transfer and Hydrodynamics in Thermal Equipment”, 24 teaching units, in Chinese

Independent Research and Exploration Course (1), 32 teaching units, in Chinese

Honors and Awards

2024 Beijing Outstanding Young Scientist Fellowship

2024 Hou Debang Chemical Science and Technology Award for Young Scientists

2024 ACS Sustainable Chemistry & Engineering Endowed Chair Award (awarded to only 3 individuals globally))

2023 First Prize for Technological Invention in Beijing

2023 Leading Young Scientist of the Nation (only ten awarded in China)

2023 DAMO Academy Most Potential Award

2023 Engineering Thermochemistry Youth Award

2023 Future Star of Chemical Engineering (only eight awarded globally)

2023 RINENG Young Investigator (YI) Award

2022 World Ranking Top 2% Scientist

2022 Journal of Material Chemistry A Emerging Investigator

2022 Carbon Capture Science & Technology Emerging Investigator

2021 Top Ten Rising Stars of Science and Technology of China

2020 National Overseas High-Level Talent Introduction Program (Youth Program)

2020 MCCA Best Innovator Award

2020 Arthur C. Stern Award for Distinguished Paper, Air & Waste Management Association

2019 Arthur C. Stern Award for Distinguished Paper

2018 Publons Peer Review Awards 2018 (top 1% reviewer in Engineering)

2018 Marie Skłodowska-Curie Individual Fellowships (Innovation Radar Project)

2017 Outstanding Reviewer of Renewable & Sustainable Energy Review

2017 Outstanding Reviewer of Energy

2015 Springer Nature Outstanding Thesis Award

2015 Outstanding Doctoral Thesis Award, Tsinghua University

2015 Outstanding Doctoral Graduate Award, Tsinghua University

2014, 2013 Outstanding Student Advisor Award, Tsinghua University

2014 National Scholarship of China

2013 Highest Merit Scholarship, Tsinghua University

Academic Achievement

Publons:https://publons.com/researcher/1317419/hui-zhou/

Web of Science: https://www.webofscience.com/wos/author/record/808915

Monographs

[1] 张衍国, 周会, 龙艳秋, 李清海. 可燃固废的热解气化与燃烧. 北京: 科学出版社; 2022.

[2] Zhou H. Combustible Solid Waste Thermochemical Conversion. Springer-Nature; 2017. (ISBN 978-981-10-3826-6, 172 pages)

[3] Zhang Y, Li Q, Zhou H. Theory and Calculation of Heat Transfer in Furnaces. Elsevier; 2016. (ISBN 978-0-12-800966-6, 350 pages)

Representative Articles

[1] Bie, X.; Pan, Y.; Wang, X.; Zhang, S.; Hu, J.; Yang, X.; Li, Q.; Zhang, Y.; Przekop, R.E.; Zhang, Y.; Zhou, H.*, NH3-induced challenges in CO2 hydrogenation over the Cu/ZnO/Al2O3 Catalyst. JACS Au 2025, 5, 1243-1257. doi://10.1021/jacsau.4c01097.

[2] Gao Y, Liu C, Zhao Y, Zhao P, Chen F, Li Q, Zhang Y, Yang B*, Zhou H*. Active Learning for Advanced Biodegradable Film Design. Nexus 2025, 2, 100070.

[3] Yang Y, Bie X, Qi X, Xu Y, Li Q, Zhang Y, Zhou H*. Modulating Pt states through hydroxyl control for low-temperature aqueous phase reforming of methanol. ACS Catalysis 2025; 15: 5847-57. doi: 10.1021/acscatal.5c00357.

[4] Yu S, He J, Zhang Z, Sun Z, Xie M, Xu Y, Bie X, Li Q, Zhang Y, Sevilla M, Titirici M*, Zhou H*. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. Advanced Materials 2024, 36, 2307412(高被引论文).

[5] Zhou H, Docherty SR, Phongprueksathat N, Chen Z, Bukhtiyarov AV, Prosvirin IP, et al. Combining atomic layer deposition with surface organometallic chemistry to enhance atomic-scale interactions and improve the activity and selectivity of Cu–Zn/SiO2 catalysts for the hydrogenation of CO2 to methanol. JACS Au 2023. doi: 10.1021/jacsau.3c00319

[6] Yu S, Dong X, Zhao P, Luo Z, Sun Z, Yang X, Li Q, Wang L*, Zhang Y*, Zhou H*. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose. Nature Communications 2022;13:3616. doi: 10.1038/s41467-022-31352-x (编辑高亮论文、高被引论文)

[7] Zhou H, Chen Z, López AV, López ED, Lam E, Tsoukalou A, et al. Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nature Catalysis 2021;4:860–71. doi: 10.1038/s41929-021-00684-0(封面论文、高被引论文)

[8] Zhou H, Chen Z, Kountoupi E, Tsoukalou A, Abdala PM, Florian P, et al. Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nature Communications 2021;12:5510. doi: 10.1038/s41467-021-25784-0

[9] Yu S, Yang X, Li Q, Zhang Y, Zhou H*. Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure. Green Energy & Environment 2023. doi: 10.1016/j.gee.2023.01.001 (封面论文、高被引论文)

[10] Zhou H, Wang H, Sadow A, Slowing I. Toward hydrogen economy: selective guaiacol hydrogenolysis under ambient hydrogen pressure. Applied Catalysis B: Environmental 2020:118890. doi: 10.1016/j.apcatb.2020.118890


Other Articles

2025

[1] Hu J, Li K, Xu Y, Li Q, Zhang Y, Zhang W, et al. Hydrothermal valorization of cellulose tuned by non-corrosive Lewis acids and bases. Chemical Engineering Journal 2025;508:161109. doi://doi.org/10.1016/j.cej.2025.161109.

[2] Li K, Yu S, Han F, Xu C, Li Q, Zhang Y, et al. Decoupled temperature and pressure strategies in hydrothermal process of cellulose: a comprehensive study. Fuel 2025;381:133304. doi://doi.org/10.1016/j.fuel.2024.133304.

[3] Zhao P, Yu S, Zhang YS, Cheng H, Yang X, Li Q, Zhang Y, Zhou H. Ni Transformation and Hydrochar Properties during Hydrothermal Carbonization of Cellulose. Fuel 2025, 382, 133772.

[4] Sun S, Yu B, Shen Y, Liu Y, Sun H, Bie X, Wu M, Xu Y, Wu C, Zhou H*. Promoting Proximity to Enhance Fe-Ca Interaction for Efficient Integrated CO2 Capture and Hydrogenation. Separation and Purification Technology 2025, 357, 130227.

[5] Shen Y, Sun S, Sun H, Xu Y, Zhou H*, Wu C*, Qiu H*. Dual Functional Materials for Integrated CO2 Capture and Utilization (ICCU): Design, Fabrication, Performances, and Challenges. Chemical Engineering Journal 2025, 512, 162440.

[6] Li K, Yu S, Radu A, Xu Y, Saad JM, Mohamed BA, Li Q, Zhang Y, Luo Z, Zhou H*. Renewable Production of Nylon Precursors from Lignin. Cell Reports Sustainability 2025, 2, 100344.

2024

[1] Jiang W, Fu P, Zhang Y, Wang X, Sui H, Zhou H. Regulating N-Cu/MoxC Interfacial Effect Coupling β-Mo2C/γ-MoC Phase Engineering to Achieve Efficient Hydrolysis Dissociation and Methanol Dehydrogenation for Hydrogen Production. Chemical Engineering Journal 2024, 498, 155622.

[2] Liu Y, Hao Y, Li F, Shen J, Xing Z, Zhou H. Simulation study on the influencing factors of thermal conductivity of large-volume vehicle-mounted liquid hydrogen bottles under different filling rates. International Journal of Hydrogen Energy 2024;69:804-16. doi://10.1016/j.ijhydene.2024.05.021.

[3] Li K, Yu S, Li Q, Zhang Y, Zhou H. Selective hydrodeoxygenation of guaiacol to cyclohexanol using activated hydrochar-supported Ru catalysts. Frontiers of Chemical Science and Engineering 2024;18:50. doi://10.1007/s11705-024-2409-1.

[4] Sun S, Wang Y, Xu Y, Sun H, Zhao X, Zhang Y, et al. Ni-functionalized Ca@Si yolk-shell nanoreactors for enhanced integrated CO2 capture and dry reforming of methane via confined catalysis. Applied Catalysis B: Environment and Energy 2024;348:123838. doi://10.1016/j.apcatb.2024.123838.

[5] Wang J, Xia R, Xu C, Yang X, Li Y, Li Q, Zhang T, Chen Q, Zhou H, Zhang Y. Characteristics of Industrialized Hydrothermal Cracking Solid Organic Fertilizer and Its Effects on Fresh Corn Growth. Waste Management 2024, 177, 243–251.

[6] Wang I, Huang S, Wang S, Bie X, Zhou H, Li Z. Mechanistic Study of Integrated CO2 Capture and Utilization over Cu and Al-Modified Calcined Limestone with High Stability Using MFB-TGA-MS. Sep. Purif. Technol. 2024, 333, 125975.

[7] Wang Y, Zhou H, Yao D, Olguin G, Ding H, Qu B, et al. Ni-CaO-CaZrO3 bi-functional materials for high purity hydrogen production via sorption enhanced steam reforming of ethanol. Journal of Cleaner Production 2024;446:141397. doi://10.1016/j.jclepro.2024.141397.

[8] Wu C, Huang Q, Xu Z, Sipra AT, Gao N, de Souza Vandenberghe LP, et al. A comprehensive review of carbon capture science and technologies. Carbon Capture Science & Technology 2024:100178.

[9] Xia R, Wang J, Yang X, Li Q, Zhou H, Sun H, et al. Comprehensive compositional analysis of liquid organic product prepared by industrialized hydrothermal cracking of biomass waste and its potential application as fertilizer. Science of The Total Environment 2024:175264.

[10] Xu Y, Yang Y, Wu M, Yang X, Bie X, Zhang S, et al. Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico Chimica Sinica 2024;40:2304003.

[11] Yu S, Li Q, Zhang Y, Zhou H. New possibility for PET plastic recycling by a tailored hydrolytic enzyme. Green Energy & Environment 2024;9:163–5.

[12] Zhang S, Wu M, Qian Z, Li Q, Zhang Y, Zhou H. CO rich syngas production from catalytic CO2 gasification-reforming of biomass components on Ni/CeO2. Fuel 2024;357:130087.

[13] Zhang S, Bie X, Qian Z, Wu M, Li K, Li Q, et al. Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst. Applied Energy 2024;361:122975. doi://10.1016/j.apenergy.2024.122975.

[14] Zhang S, Peng Y, Wu M, Li Q, Zhang Y, Zhou H. Enhancing CO2 gasification-reforming of municipal solid waste with Ni/CeO2 and Ni/ZrO2 catalysts. Journal of Materials Chemistry A 2024;12:11848-11856. doi://10.1039/d4ta00665h.

[15] Zhang S, Wu M, Bie X, Qian Z, Li Q, Zhang Y, et al. Deciphering interactions between biomass components during CO2 gasification: Insights from thermogravimetric behavior, gas production, and char reactivity. Fuel 2024;371. doi://10.1016/j.fuel.2024;371:131974.

[16] Zhang S, Xu Y, Bie X, Li Q, Zhang Y, Zhou H. Mechanisms in CO2 gasification and co-gasification of combustible solid waste: a critical review. Gas Science and Engineering 2024;128:205368. doi://10.1016/j.jgsce.2024.205368.

[17] Zhao P, Yu S, Li Q, Zhang Y, Zhou H. Understanding heavy metal in the conversion of biomass model component: migration and transformation characteristics of Cu during hydrothermal carbonization of cellulose. Energy 2024;293:130700. doi://10.1016/j.energy.2024.130700.

[18] Zhou H, Sun S, Xu Y, Zhang Y, Yi S, Wu C. Upcycling municipal solid waste to sustainable hydrogen via two-stage gasification-reforming. Journal of Energy Chemistry 2024;96:611-24. doi://10.1016/j.jechem.2024.05.018.

2023

[1] Xu Y, Wu M, Yang X, Sun S, Li Q, Zhang Y, et al. Recent advances and prospects in high purity H2 production from sorption enhanced reforming of bio-ethanol and bio-glycerol as carbon negative processes: A review. Carbon Capture Science & Technology 2023;8:100129.

[2] Yu S, Li Q, Zhang Y, Zhou H*. New possibility for pet plastic recycling by a tailored hydrolytic enzyme. Green Energy & Environment 2023;9:163-165.

[3] Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho S-H, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource upgrade for sustainable energy, environment, and biomedicine. Nano-Micro Lett. 2023, 15, 35.

[4] 陈荣杰, 王龙洲, 李清海, 周会, 张衍国. 响应曲面法优化木质素水热转化生产生物油. 可再生能源 2023:285–90.

[5] Chen J, Duan L, Ma Y, Jiang Y, Huang A, Zhu H, et al. Recent progress in calcium looping integrated with chemical looping combustion (CaL-CLC) using bifunctional CaO/CuO composites for CO2 capture: A state-of-the-art review. Fuel 2023;334:126630.

[6] 于士杰, 赵鹏, 刘茂清, 高宇, 李清海, 张衍国, et al. 温度-压力解耦对木质素水热过程中结构变化及解聚产物的影响. 燃料化学学报 2023;51:1–9.

[7] Xu Y, Wu M, Yang X, Sun S, Li Q, Zhang Y, et al. Recent advances and prospects in high purity H2 production from sorption enhanced reforming of bio-ethanol and bio-glycerol as carbon negative processes: A review. Carbon Capture Science & Technology 2023;8:100129.

[8] Liu Q (1), Jiang D (1), Zhou H (1), Yuan X, Wu C, Hu C, et al. Pyrolysis–catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy. Proceedings of the National Academy of Sciences 2023;120:e2305078120.

[9] Cong K, Yang F, Zhou H, Zhang Y, Li Q. A pilot-scale test facility of 500 kWth for industrial CFB boilers on low nitrogen combustion-discussion of design, experiment, and economic analysis. Energy 2023;284:128657.

2022

[1] Yang Y, Xu Y, Li Q, Zhang Y, Zhou H*. Two-dimensional Carbide/Nitride (MXenes) materials in thermal catalysis. J Mater Chem A 2022;10:19444-19465.

[2] Yu S, Wang L, Li Q, Zhang Y, Zhou H*. Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. Materials Today Sustainability 2022;19:100209.

[3] Yu S, Zhao P, Yang X, Li Q, Mohamed BA, Saad JM, Zhang Y, Zhou H*. Low-temperature hydrothermal carbonization of pectin enabled by high pressure. Journal of Analytical and Applied Pyrolysis 2022;166:105627.

[4] Zhang S, Yu S, Li Q, Mohamed BA, Zhang Y, Zhou H*. Insight into the relationship between CO2 gasification characteristics and char structure of biomass. Biomass and Bioenergy 2022;163:106537.

[5] Chen J, Xu Y, Liao P, Wang H, Zhou H*. Recent progress in integrated CO2 capture and conversion process using dual function materials: a state-of-the-art review. Carbon Capture Science and Technology 2022;4:100052.

[6] Yu S, Zhao P, Yang X, Li Q, Zhang Y, Zhou H*. Formation and evolution of pectin-derived hydrothermal carbon from pectin. Fuel 2022;326:124997.

[7] Yu S, Xie M, Li Q, Zhang Y, Zhou H*. Evolution of kraft lignin during hydrothermal treatment under different reaction conditions. Journal of the Energy Institute 2022;103:147–53.

[8] Yang X, Zhou H, Li Q, Tan Z, Zhang Y. Characterization of blast furnace slag particles generated by nitrogen jet granulation. The Canadian Journal of Chemical Engineering 2022

[9] Yu S, Yang X, Zhao P, Li Q, Zhou H*, Zhang Y*. From biomass to hydrochar: Evolution on elemental composition, morphology, and chemical structure. Journal of the Energy Institute 2022;101:194–200.

[10] Chen R, Li H, Li K, Zhang S, Li Q, Zhou H*, et al. Hydrothermal liquefaction of scrap tires: optimization of reaction conditions and recovery of high value-added products. Frontiers in Energy Research 2022;10.

2021

[1] Yu S, Yang X, Xiang J, Li Q, Zhou H*, Zhang Y*. Statistical study of the distribution of voidage in a bubbling fluidized bed with a constant section. Chemical Engineering Research and Design 2021;171:305–16.

[2] Yu S, Yang X, Zhou H, Tan Z, Cong K, Zhang Y, et al. Thermal and kinetic behaviors during co-pyrolysis of microcrystalline cellulose and styrene–butadiene–styrene triblock copolymer. Processes 2021;9:1335.

[3] Chen R, Zhang S, Yang X, Li G, Zhou H, Li Q, et al. Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics. Waste Management 2021;126:331–9.

[4] Saad JMd, Williams PT, Zhang YS, Yao D, Yang H, Zhou H. Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: a thermogravimetric and kinetic study. Journal of Analytical and Applied Pyrolysis 2021;156:105135.

[5] Mohamed BA, Bi X, Li LY, Leng L, Salama E-S, Zhou H. Bauxite residue as a catalyst for microwave-assisted pyrolysis of switchgrass to high quality bio-oil and biochar. Chemical Engineering Journal 2021;426:131294.

[6] Yu S, Yang X, Xiang J, Zhou H, Li Q, Zhang Y. Effects of bed size on the voidage in gas-solid bubbling fluidized beds. Powder Technology 2021;387:197–204.

2020

[1] Zhou H*, Saad J, Li Q, Xu Y. Steam reforming of polystyrene at a low temperature for high H2/CO gas with bimetallic Ni-Fe/ZrO2 catalyst. Waste Management 2020;104:42–50.

[2] Zhao M, Memon MZ, Ji G, Yang X, Vuppaladadiyam AK, Song Y, Raheem A, Li J, Wang W, Zhou H*. Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renewable Energy 2020;148:168–75.

[3] Wang F, Cheng B, Ting ZJ, Dong W, Zhou H, Anthony E, et al. Two-Stage Gasification of Sewage Sludge for Enhanced Hydrogen Production: Alkaline Pyrolysis Coupled with Catalytic Reforming Using Waste-Supported Ni Catalysts. ACS Sustainable Chem Eng 2020;8:13377–86.

[4] Zhou H, Wang H, Perras FA, Naik P, Pruski M, Sadow AD, et al. Two-step conversion of Kraft lignin to nylon precursors under mild conditions. Green Chemistry 2020;22:4676–82. doi: 10.1039/D0GC01220C

[5] Zhou H*, Park AHA. Bio-energy with carbon capture and storage (BECCS) via alkaline thermal treatment: production of high purity H2 from wet wheat straw grass with CO2 capture. Applied Energy. 2020;264:114675. doi: 10.1016/j.apenergy.2020.114675

2019

[1] Zhao M, Wang F, Fan Y, Raheern A, Zhou H*. Low-temperature alkaline pyrolysis of sewage sludge for enhanced H2 production with in-situ carbon capture. Int J Hydrogen Energ. 2019:44, 8020–8027.

[2] Zhao M, Cui X, Ji G, Zhou H, Vuppaladadiyam AK, Zhao X. Alkaline Thermal treatment of cellulosic biomass for H2 production using Ca-based bifunctional materials. ACS Sustainable Chem Eng 2019;7:1202–9.

2018

[1] Surenderan L, Saad JM, Zhou H, Neshaeimoghaddam H, Abdul Rahman A. characterization studies on waste plastics as a feedstock for energy recovery in malaysia. IJET 2018;7:534.

[2] Zhou H, Naik P, Slowing I, Sadow A. Mechanism study of production of cyclohexanol/cyclohexanone from lignin-derived guaiacol catalyzed by palladium on high-surface-area ceria at mild conditions. Abstracts of Papers of the American Chemical Society 2018;256.

[3] Long Y, Li Q, Zhou H, Meng A, Zhang Y. A grey-relation-based method (GRM) for thermogravimetric (TG) data analysis. J Mater Cycles Waste Manag 2018;20:1026–35.

2017

[1] Chen X, Jiang J, Yan F, Li K, Tian S, Gao Y, et al. Dry Reforming of model biogas on a Ni/SiO 2 catalyst: overall performance and mechanisms of sulfur poisoning and regeneration. ACS Sustainable Chemistry & Engineering 2017;5:10248–57.

[2] Zhao X (1), Zhou H (1), Sikarwar V, Zhao M, Park A, Fennell P, Shen L, Fan L. Biomass-based chemical looping technologies: the good, the bad and the future. Energy & Environmental Science 2017:10:1885-1910. doi: 10.1039/C6EE03718F (共同一作,封面文章, ESI高被引论文)

[3] Hou C, Wu Y, Jiao Y, Huang J, Wang T, Fang M, et al. Integrated direct air capture and CO2 utilization of gas fertilizer based on moisture swing adsorption. Journal of Zhejiang University-SCIENCE A 2017;18:819–30.

[4] Li Q, Long Y, Zhou H, Meng A, Tan Z, Zhang Y. Prediction of higher heating values of combustible solid wastes by pseudo-components and thermal mass coefficients. Thermochimica Acta 2017.

[5] Long Y, Li Q, Zhou H, Meng A, Zhang Y. Pseudo-component method for characterization of the thermochemical conversion of combustible solid waste, Pseudo-component method for characterization of the thermochemical conversion of combustible solid waste. Journal of Tsinghua University(Science and Technology) 2017;57:1324–30.

[6] Long Y, Meng A, Chen S, Zhou H, Zhang Y, Li Q. Pyrolysis and combustion of typical wastes in a newly designed macro thermogravimetric analyzer: characteristics and simulation by model components. Energy Fuels 2017;31:7582–90.

2016

[1] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Influence of process conditions on the formation of 2–4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride. Fuel Processing Technology 2016;144:299-304.

[2] Long Y, Zhou H*, Meng A, Li Q, Zhang Y. Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers. Korean Journal of Chemical Engineering 2016;33:2638-43.

[3] Long Y, Zhou H, Meng A, Li Q, Zhang Y. Pseudo-component method to predict interaction features of biowaste and plastics. Abstracts of Papers of the American Chemical Society 2016;252.

[4] Long Y, Meng A, Zhou H, Qin L, Zhang Y, Li Q. Pyrolysis characteristics of 18 kinds of biomass waste. Abstracts of Papers of the American Chemical Society 2016;252.

[5] 张衍国, 蒙爱红, 周会, 龙艳秋, 武景丽. 以低二恶英排放为目标的氧化/还原气氛下可燃固体废弃物热化学转化机理. 科技创新导报 2016:162–3.

2015

[1] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Effect of interactions of PVC and biomass components on the formation of polycyclic aromatic hydrocarbons (PAH) during fast co-pyrolysis. RSC Advances 2015;5:11371-7.

[2] Zhou H, Long Y, Meng A, Chen S, Li Q, Zhang Y. A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Advances 2015;5:26509-16.

[3] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Management 2015;36:136-46.

[4] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel 2015;145:151-7.

[5] Zhou H, Meng A, Long Y, Li Q, Zhang Y. A review of dioxin-related substances during municipal solid waste incineration. Waste Management 2015;36:106-18.

[6] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Management 2015;38:194-200.

[7] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Interactions of three municipal solid waste components during co-pyrolysis. Journal of Analytical and Applied Pyrolysis 2015;111:265-71.

[8] Xiong S, Zhuo J, Zhou H, Pang R, Yao Q. Study on the co-pyrolysis of high density polyethylene and potato blends using thermogravimetric analyzer and tubular furnace. Journal of Analytical and Applied Pyrolysis 2015;112:66–73.

[9] Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q. Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Management 2015;46:247–56.

[10] Meng A, Chen S, Zhou H, Long Y, Zhang Y, Li Q. Pyrolysis and simulation of typical components in wastes with macro-TGA. Fuel 2015;157:1–8.

[11] Chen S, Meng A, Long Y, Zhou H, Li Q, Zhang Y. TGA pyrolysis and gasification of combustible municipal solid waste. Journal of the Energy Institute 2015;88:332–43.

2014

[1] Zhou H, Meng A, Long Y, Li Q, Zhang Y. An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value. Renewable & Sustainable Energy Reviews 2014;36:107-22. doi: 10.1016/j.rser.2014.04.024 (高被引论文)

[2] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Polycyclic Aromatic Hydrocarbon Formation from the Pyrolysis/Gasification of Lignin at Different Reaction Conditions. Energy & Fuels 2014;28:6371-9.

[3] Zhou H, Wu C, Meng A, Zhang Y, Williams PT. Effect of interactions of biomass constituents on polycyclic aromatic hydrocarbons (PAH) formation during fast pyrolysis. Journal of Analytical and Applied Pyrolysis 2014;110:264-9.

[4] Zhou H, Sun J, Meng A, Li Q, Zhang Y. Effects of Sorbents on the Partitioning and Speciation of Cu During Municipal Solid Waste Incineration. Chinese Journal of Chemical Engineering 2014;22:1347-51.

[5] Zhou H, Meng A, Long Y, Li Q, Zhang Y. Classification and comparison of municipal solid waste based on thermochemical characteristics. Journal of the Air & Waste Management Association 2014;64:597-616.

[6] Zhou H, Meng A, Long Y, Li Q, Zhang Y. Interactions of municipal solid waste components during pyrolysis: A TG-FTIR study. Journal of Analytical and Applied Pyrolysis 2014;108:19-25.

[7] Li Q, Meng A, Li L, Zhou H, Zhang Y. Investigation of biomass ash thermal decomposition by thermogravimetry using raw and artificial ashes. Asia-Pacific Journal of Chemical Engineering 2014;9:726–36.

[8] 蒙爱红, 龙艳秋, 周会, 张衍国, 李清海. 可燃固体废弃物热化学反应表征探索. 清华大学学报(自然科学版) 2014;54:235–9.

[9] 孙进, 李清海, 李国岫, 周会, 秦岭, 张衍国. 城市生活垃圾焚烧中氯化物对铜迁移转化特性的影响. 中国电机工程学报 2014:1245–52.

2013

[1] Zhou H, Long Y, Meng A, Li Q, Zhang Y. The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta 2013;566:36-43.

[2] Meng A, Zhou H, Qin L, Zhang Y, Li Q. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis 2013;104:28–37.