Xu XuefeiAssociate Professor

Email: xuxuefei@tsinghua.edu.cn;xuxuefei@gmail.com.

Address: Lee Shao Kee Science and Technology Building B551

Education background

9/2001-6/2006     Ph.D., Physical Chemistry (Theoretical Chemistry), Xiamen University, China

9/1997-7/ 2001    B.S., Chemistry, Xiamen University, China

Experience

2015-         Associate professor, Center for Combustion Energy, Tsinghua University

7/2013-5/2015    Research associate, the University of Minnesota, Twin Cities, USA

7/2010-6/2013    Postdoctoral associate, the University of Minnesota, Twin Cities, USA

5/2008-5/2010    Postdoctoral fellow, the Hebrew University of Jerusalem, Jerusalem, Israel

2/2008-5/2008    Research assistant, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR

7/2006-4/2008    Lecturer, Department of Chemistry, Xiamen University, Xiamen, China

9/2004-2/2005    Research assistant, Physics and Materials Science, City University of Hong Kong, Hong Kong SAR

Areas of Research Interests/ Research Projects

Theoretical and Computational Chemistry, Theory of Chemical Reaction Kinetics Interface, Clean Energy.

Research Status

Main research directions: High-precision theoretical kinetics calculations of key gas-phase reactions in combustion, atmosphere, and interstellar chemistry; Catalyst design and mechanism; AI-assisted research on the physical and chemical phenomena of interfaces; Research on reaction kinetics and method and program development under extreme reaction conditions.

Academic Achievement

1、Zhang, P.; Xu, X.*, J. Chem. Theory Comput. 2025, in press

DOI: https://doi.org/10.1021/acs.jctc.5c00705

Modulation of Electric Field and Interface on Competitive Reaction Mechanisms

2、Zhao, X.; Shu, Y.; Meng, Q.; Bao, J. J.; Xu, X.*; Truhlar, D. G. J. Phys. Chem. A 2025,

Improvement of Fourteen Coupled Global Potential Energy Surfaces of 3A’ States of O + O2

DOI: https://doi.org/10.1021/acs.jpca.5c00464

3、Zhao, X.; Xu, X.*; Xu, H.*, The Astrophysical Journal, 2025, 981, 112

DOI: https://doi.org/10.3847/1538-4357/adb1df

Unimolecular Chemical Kinetics in the Interstellar: Competition of Infrared Radiation and Collision Activation Mechanisms

4、Zhang, P.; Xu, X.*, Langmuir, 2025, 41, 5, 3675–3683

DOI: https://doi.org/10.1021/acs.langmuir.4c05004

Propensity of Water Self-Ions at Air(Oil)-Water Interfaces Revealed by Deep Potential Molecular Dynamics with Enhanced Sampling

5、Zhao, X.; Xu, X.*; Xu, H.*, J. Chem. Phys. 2024, 161, 231101.

DOI: https://doi.org/10.1063/5.0241219

High-temperature non-equilibrium atom–diatom collisional energy transfer

6、Feng, M.; Wang, Y.; Hou, D.; Li, H.; Pang, A.; Xu, X.*; Luo, K. H.*, Fuel 2024, 375, 132628

DOI: https://doi.org/10.1016/j.fuel.2024.132628

Atomistic insights into two-stage combustion of a single boron nanoparticle via reactive molecular dynamics

7、Zhang, P.; Chen, C.; Feng, M.; Sun, C.*; Xu, X.*, Journal of the American Chemical Society 2024, 146, 19537-19546

DOI: https://pubs.acs.org/doi/abs/10.1021/jacs.4c06641

Hydroxide and Hydronium Ions Modulate the Dynamic Evolution of Nitrogen Nanobubbles in Water

8、Zhang, P.; Gardini, A. T.; Xu, X.*; Parrinello, M.*, Journal of Chemical Information and Modeling 2024, 64 (9), 3599-3604

DOI: https://pubs.acs.org/doi/abs/10.1021/acs.jcim.4c00273

Intramolecular and water mediated tautomerism of solvated glycine

9、Zhang, P.; Feng, M.; Xu, X.*, ACS Phys. Chem Au 2024, 4, 4, 336–346

DOI: https://doi.org/10.1021/acsphyschemau.3c00076

Double-Layer Distribution of Hydronium and Hydroxide Ions in the Air–Water Interface

10、Meana-Pañeda, R.; Zheng, J.; …., Zhang, R. M.; Xu, X.*; …, Truhlar, D. G.*, Comput. Phys. Commun. 2024, 294, 108933.

DOI: https://doi.org/10.1016/j.cpc.2023.108933

Polyrate 2023: A computer program for the calculation of chemical reaction rates for polyatomics. New version announcement

Download:https://zenodo.org/records/8309384

11、Zhang, R. M.; Xu, X.*; Truhlar, D. G.*, Comput. Phys. Commun. 2023, 293, 108894.

DOI: https://doi.org/10.1016/j.cpc.2023.108894

TUMME 2023: Tsinghua University Minnesota Master Equation program. New version announcement

Download: https://zenodo.org/records/7943284

12、Yan, L.; Zhang, R. M.; Xu, X.*, Ecotoxicology and Environmental Safety, 2023, 266, 115553.

DOI: https://doi.org/10.1016/j.ecoenv.2023.115553

Theoretical Kinetics studies of isoprene peroxy radical chemistry: The fate of Z-δ-(4-OH, 1-OO)-ISOPOO radical

13、Zhao, X.; Merritt, I. C. D.; Lei, R.; Shu, Y.; Jacquemin, D.; Zhang, L.*; Xu, X.*; Vacher, M.*; Truhlar, D. G.*, J. Chem. Theory Comput. 2023, 19, 6, 1672–1685.

DOI: https://doi.org/10.1021/acs.jctc.3c00813

Nonadiabatic Coupling in Trajectory Surface Hopping: Accurate Time Derivative Couplings by the Curvature-Driven Approximation

14、Han, X.; Xu, X.*, ACS Materials Lett. 2023, 5, 8, 2114-2120.

DOI: https://doi.org/10.1021/acsmaterialslett.3c00457

Indirect Modulation of Cu Atoms Supported on Black Phosphorus for Fast Kinetic Li–S Batteries: A Theoretical Study

15、Chen, W.; Zheng, J.; Bao, J. L.; Truhlar, D. G.*; Xu, X.*, Comput. Phys. Commun. 2023, 288, 108740.

DOI: https://doi.org/10.1016/j.cpc.2023.108740

MSTor 2023: A new version of the computer code for multistructural torsional anharmonicity, now with automatic torsional identification using redundant internal coordinates

16、Yan, L.; Wang, Y.; Zhang, R. M.; He, X.*; Xu, X.*, J. Chem. Theory Comput. 2023, 19, 11, 3284–3302.

DOI: https://doi.org/10.1021/acs.jctc.3c00033

Comprehensive Theoretical Study on Four Typical Intramolecular Hydrogen Shift Reactions of Peroxy Radicals: Multireference Character, Recommended Model Chemistry, and Kinetics

17、Zhao, X.; Shu, Y.; Zhang, L.*; Xu, X.*; Truhlar, D. G.*, J. Chem. Theory Comput. 2023, 19, 6, 1672–1685.

DOI: https://doi.org/10.1021/acs.jctc.2c01260

Direct Nonadiabatic Dynamics of Ammonia with Curvature-Driven Coherent Switching with Decay of Mixing and with Fewest Switches with Time Uncertainty: An Illustration of Population Leaking in Trajectory Surface Hopping Due to Frustrated Hops

18、Han, X.; Xu, X.* J. Mater. Chem. A, 2023,11, 18922-18932.

DOI: https://doi.org/10.1039/D3TA03366J

Mechanistic insights into trisulfur radical generation in lithium–sulfur batteries

19、Chen, W.; Zhang, P.; Truhlar, D. G.; Zheng, J.; Xu, X.*, J. Chem. Theory Comput. 2022, 18, 7671-7682

DOI: https://doi.org/10.1021/acs.jctc.2c00952

Identification of Torsional Modes in Complex Molecules Using Redundant Internal Coordinates: The Multistructural Method with Torsional Anharmonicity with a Coupled Torsional Potential and Delocalized Torsions

20、Chen, W.; Zhang, P.; Truhlar, D. G.; Zheng, J.; Xu, X.*, J. Chem. Theory Comput. 2023, 19, 9, 2697–2698.

DOI: https://doi.org/10.1021/acs.jctc.3c00272

Correction to “Identification of Torsional Modes in Complex Molecules Using Redundant Internal Coordinates: The Multistructural Method with Torsional Anharmonicity with a Coupled Torsional Potential and Delocalized Torsions”

21、Zhang, Z.; Xu, X.*, ACS Appl. Mater, Interfaces 2022, 14 (25), 28900-28910

DOI: https://doi.org/10.1021/acsami.2c05649

Mechanistic Study on Enhanced Electrocatalytic Nitrogen Reduction Reaction by Mo Single Cluster Supported on MoS2

22、Zhang, R. M.; Xu, X.*; Truhlar, D. G.*, J. Phys. Chem. A 2022, 126, 3006-3014

DOI: https://doi.org/10.1021/acs.jpca.1c09905

Observing Intramolecular Vibrational Energy Redistribution via the Short-Time Fourier Spectrum

23、Zhang, R. M.; Chen, W.; Truhlar, D. G.*; Xu, X.* Faraday Discussions, 2022, 238, 431-460

DOI: https://doi.org/10.1039/D2FD00024E

Master Equation Study of Hydrogen Abstraction from HCHO by OH via a Chemically Activated Intermediate

DOI: https://doi.org/10.1039/d2fd90048c

Collisional energy transfer: General discussion, Faraday Discussions, 2022, 238, 121-143

DOI: https://doi.org/10.1039/d2fd90050e

The master equation: General discussion, Faraday Discussions, 2022, 238, 529-574

24、Zhang, Z.; Xu, X.* Energy & Environmental Materials 2022, in production.

DOI: https://doi.org/10.1002/eem2.12348

Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd-W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre-Adsorption

25、Feng, M.; Ma, X.; Zhang, Z., Luo, K.; Sun, C. *; Xu, X.*, Soft Matter, 2022, 18, 2968-2978.

DOI: https://doi.org/10.1039/D2SM00181K

How Sodium Chloride Extends Lifetime of Bulk Nanobubbles in Water

26、Li, Y.; Guo, X.; Zhang, R. M.; Zhang, H.; Zhang, X.*; Xu, X.*, Phys. Chem. Chem. Phys. 2022, 24,8672-8682.

DOI: https://doi.org/10.1039/D2CP00396A

Pressure-Dependent Kinetics of o-Xylene Reaction with OH Radical

27、Zhang, Z.; Xu, X.*, Advanced Theory and Simulations, 2022, 5, 2100579

DOI: https://doi.org/10.1002/adts.202100579

g-C3N4-Supported Metal-Pair Catalysts toward Efficient Electrocatalytic Nitrogen Reduction: A Computational Evaluation

28、Zhang, R. M.; Xu, X.*; Truhlar, D. G.* Comput. Phys. Commun. 2022, 270, 108140.

DOI: https://doi.org/10.1016/j.cpc.2021.108140

TUMME: Tsinghua University Minnesota Master Equation program

Download:https://comp.chem.umn.edu/tumme/

29、Zhang, R. M.; Xu, X.*; Truhlar, D. G.* J. Phys. Chem. A 2021, 125, 6303-6313.

DOI: https://doi.org/10.1021/acs.jpca.1c03845

Energy Dependence of Ensemble-Averaged Energy Transfer Moments and Its Effect on Competing Decomposition Reactions

(Special Virtual Issue entitled "125 Years of The Journal of Physical Chemistry")

30、Gao, G. L.; Fleming, D. G.; Truhlar, D. G.*; Xu, X.* J. Phys. Chem. Lett. 2021, 12, 4154-4159.

DOI: https://doi.org/10.1021/acs.jpclett.1c01229

Large Anharmonic Effects on Tunneling and Kinetics: Reaction of Propane with Muonium

31、Han, X.; Zhang, Z.; Xu, X.* J. Mater. Chem. A 2021, 9, 12225-12235.

DOI: https://dx.doi.org/10.1039/D1TA01948A

Single Atom Catalysts Supported on N-doped Graphene toward Fast Kinetics in Li-S Batteries: A Theoretical Study

32、Chen, W.; Guo, X.; Chen, L.; Zhang, R.; Li, Y.; Feng, H.; Xu, X.*; Zhang, X.* Phys. Chem. Chem. Phys. 2021, 23, 7333-7342.

DOI: https://dx.doi.org/10.1039/d1cp00386k

A Kinetics Study on Hydrogen Abstraction Reactions of Cyclopentane by Hydrogen, Methyl, and Ethyl Radicals

33、Li, Y.; Javoy, S.; Mevel, R.*; Xu, X.* Phys. Chem. Chem. Phys. 2021, 23, 585-596.

DOI: https://dx.doi.org/10.1039/d0cp05131d

A Chemically Consistent Rate Constant for the Reaction of Nitrogen Dioxide with the Oxygen Atom

34、Zhang, Z.; Xu, X.* ACS Appl. Mater, Interfaces 2020, 12, 56987-56994.

DOI: https://dx.doi.org/10.1021/acsami.0c16362

Efficient Heteronuclear Diatom Electrocatalyst for Nitrogen Reduction Reaction: Pd–Nb Diatom Supported on Black Phosphorus

35、Zhang, R. M.; Xu, X.*; Truhlar, D. G.* J. Am. Chem. Soc. 2020, 142, 16064-16071.

DOI: https://doi.org/10.1021/jacs.0c07692

Selected as JACS Spotlight: J. Am. Chem. Soc. 2020, 142, 16511-16512.

DOI: https://dx.doi.org/10.1021/jacs.0c10087

Low-Pressure Limit of Competitive Unimolecular Reactions

36、Wu, J.; Gao, L. G.; Varga, Z.; Xu, X.*; Ren, W.*; Truhlar, D. G.* Angew. Chem. Int. Ed. 2020, 132, 10918-10922.

DOI: https://doi.org/10.1002/anie.202001065

Water Catalysis of the Reaction of Methanol with OH Radical in the Atmosphere is Negligible

37、Zhang, Z.; Yang, K. R.; Xu, X.* J. Phys. Chem. C 2019, 124, 256-266.

DOI: http://dx.doi.org/10.1021/acs.jpcc.9b04872

Understanding the Separation Mechanism of C2H6/C2H4 on Zeolitic Imidazolate Framework ZIF-7 by Periodic DFT Investigations

38、Gao, L. G.; Zhang, R.-M; Xu, X.*; Truhlar, D. G.* J. Am. Chem. Soc. 2019, 141, 13635-13642.

DOI: https://pubs.acs.org/doi/10.1021/jacs.9b06506

Quantum effects on H2 diffusion in Zeolite RHO: Inverse kinetic isotope effect for sieving

39、Guo, X.; Zhang, R.-M; Gao, L. G.; Zhang, X.*; Xu, X.* Phys. Chem. Chem. Phys. 2019, 21, 24458-24468.

DOI: http://dx.doi.org/10.1039/c9cp04809j

Computational kinetics of the hydrogen abstraction reactions of n-propanol and iso-propanol by OH radical

40、Zhang, R.-M.; Truhlar, D. G.; Xu, X.* Research. 2019, ID5373785.

DOI: https://doi.org/10.34133/2019/5373785

Kinetics of the toluene reaction with OH radical

41、Gao, L. G.; Zheng, J.; Fernández-Ramos, A.; Truhlar, D. G.*; Xu, X.* J. Am. Chem. Soc. 2018, 140, 2906.

DOI: http://pubs.acs.org/doi/10.1021/jacs.7b12773

Kinetics of the Methanol Reaction with OH at Interstellar, Atmospheric, and Combustion Temperatures

42、Zhang, H.; Zhang, X.*; Truhlar, D. G.; Xu, X.* J. Phys. Chem. A. 2017, 121, 9033.

DOI: http://dx.doi.org/10.1021/acs.jpca.7b09374

Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory

43、Li, X.; Xu, X.*; You, X.*; Truhlar, D. G.* J. Phys. Chem. A. 2016, 120, 4025.

DOI: http://dx.doi.org/10.1021/acs.jpca.6b02600

Benchmark Calculations for Bond Dissociation Enthalpies of Unsaturated Methyl Esters and the Bond Dissociation Enthalpies of Methyl Linolenate

44、Xu, X.; Zheng, J.; Truhlar, D. G.* J. Am. Chem. Soc. 2015, 137, 8026.

DOI: http://dx.doi.org/10.1021/jacs.5b04845

Selected as JACS Spotlight: J. Am. Chem. Soc. 2015, 137, 8311.

DOI: http://dx.doi.org/10.1021/jacs.5b06634

Ultraviolet Absorption Spectrum of Malonaldehyde in Water Is Dominated by Solvent-Stabilized Conformations

45、Li, S. L.; Xu, X.; Truhlar, D. G.* Phys. Chem. Chem. Phys. 2015, 17, 20093.

DOI: http://dx.doi.org/10.1039/C5CP02461G

Computational Simulation and Interpretation of the Low-Lying Excited Electronic States and Electronic Spectrum of Thioanisole

46、Xu, X.; Zhang, W.; Tang, M.; Truhlar, D. G.* J. Chem. Theory Comput. 2015, 11, 2036.

DOI: http://dx.doi.org/10.1021/acs.jctc.5b00081

Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition metals?

47、Bao, J.; Yu, H. S.; Duanmu K.; Makeev, M.; Xu, X.; Truhlar, D. G.* ACS. Catal. 2015, 5, 2070.

DOI: http://dx.doi.org/10.1021/cs501675t

Density Functional Theory of the Water Splitting Reaction on Fe(0): Comparison of Local and Nonlocal Correlation Functionals

48、Xu, X.; Zheng, J.; Yang, K. R.; Truhlar, D. G.* J. Am. Chem. Soc. 2014, 136, 16378.

DOI: http://dx.doi.org/10.1021/ja509016a

Photodissociation Dynamics of Phenol: Multistate Trajectory Simulations including Tunneling

49、Wang, B.; Yang, K. R.; Xu, X.; Isegawa, M.; Leverentz, H. R.; and Truhlar, D. G.* Acc. Chem. Res. 2014, 47, 2731.

DOI: http://dx.doi.org/10.1021/ar500068a

Quantum Mechanical Fragment Methods Based on Partitioning Atoms or Partitioning Coordinates

50、Xu, X.; Yang, K. R.; and Truhlar, D. G.*, J. Chem. Theory Comput. 2014, 10, 2070.

DOI: http://dx.doi.org/10.1021/ct500128s

Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms

51、Zheng, J.; Xu, X.; Meana-Pañeda, R.; Truhlar, D. G*., Chem. Sci. 2014, 5, 2091.

DOI: http://dx.doi.org/10.1039/C3SC53290A

Army Ants Tunneling for Classical Simulations

52、Li, S. H.; Marenich, A. V.; Xu, X.; and Truhlar, D. G.*, J. Phys. Chem. Lett. 2014, 5, 322.

DOI: http://dx.doi.org/10.1021/jz402549p

Configuration Interaction-Corrected Tamm-Dancoff Approximation: A Time-Dependent Density Functional Method with the Correct Dimensionality of Conical Intersections.

53、Xu, X.; Yang, K. R.; Truhlar, D. G.* J. Chem. Theory Comput. 2013, 9, 3612.

DOI: http://dx.doi.org/10.1021/ct400447f

Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol

54、Xu, X.; Gozem, S.; Olivucci, M.; Truhlar, D. G.* J. Phys. Chem. Lett. 2013, 4, 253.

DOI: http://dx.doi.org/10.1021/jz301935x

Combined Self-Consistent-Field and Spin-Flip Tamm-Dancoff Density Functional Approach to Potential Energy Surfaces for Photochemistry

55、Xu, X.; Yu, T.; Papajak, E.; and Truhlar, D. G.*, J. Phys. Chem. A 2012, 116, 10480.

DOI: http://dx.doi.org/10.1021/jp307504p

Multi-Structural Variational Transition State Theory: Kinetics of the Hydrogen Abstraction from Carbon-2 of 2-Methyl-1-propanol by Hydroperoxyl Radical Including All Structures and Torsional Anharmonicity

56、Xu, X.; Papajak, E.; Zheng, J.; and Truhlar, D. G.*, Phys. Chem. Chem. Phys. 2012, 14, 4204.

DOI: http://dx.doi.org/10.1039/c2cp23692c

Multi-Structural Variational Transition State Theory: Kinetics of the 1,5-Hydrogen shift Isomerization of 1-Butoxyl Radical Including All Structures and Torsional Anharmonicity

57、Xu, X.; Truhlar, D. G.*, J. Chem. Theory Comput. 2012, 8, 80.

DOI: http://dx.doi.org/10.1021/ct200558j

Performance of Effective Core Potentials for Density functional Calculations on 3d Transition Metals

58、Xu, X.; Truhlar, D. G.*, J. Chem. Theory Comput. 2011, 7, 2766.

DOI: http://dx.doi.org/10.1021/ct200234r

Accuracy of Effective Core Potentials and Basis Sets for Density Functional Calculations, Including Relativistic Effects, As Illustrated by Calculations on Arsenic Compounds

59、Papajak, E.; Zheng, J.; Xu, X.; Leverentz, H. R. and Truhlar, D. G.* J. Chem. Theory Comput. 2011, 7, 3027.

DOI: http://dx.doi.org/10.1021/ct200106a

Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions

60、Xu, X.; Alecu, I. M. and Truhlar, D. G.* J. Chem. Theory Comput. 2011, 7, 1667.

DOI: http://dx.doi.org/10.1021/ct2001057

How Well Can Modern Density Functionals Predict Internuclear Distances at Transition States?

61、Zheng, J.; Xu, X.; Truhlar D. G.* Theor. Chem. Acc. 2011, 128, 295.

DOI: http://dx.doi.org/10.1007/s00214-010-0846-z

Minimally augmented Karlsruhe Basis Sets

62、Xu, X.; Zilberg, S.; Haas, Y.* J. Phys. Chem. A. 2010, 114, 4924.

DOI: http://dx.doi.org/10.1021/jp911250g

Electrophilic Aromatic Substitution: the Role of Electronically Excited States.

63、Xu, X.; Kahan, A.; Zilberg, S.; Haas, Y.*; J. Phys. Chem. A. 2009, 113, 9779.

DOI: http://dx.doi.org/10.1021/jp904097k

Photo-Reactivity of a Push-Pull Merocyanine in Static Electric Fields: a Three State Model of Isomerization Reactions Involving Conical Intersections

64、Xu, X.; Zhang, R. Q.*; Cao, Z. X.*; Zhang, Q. E.; J. Theor. Comput. Chem. 2008, 7, 719.

DOI: http://dx.doi.org/10.1142/S0219633608004088

Intramolecular Charge Transfer and Photoisomerization of the DCM Styrene Dye: A Theoretical Study

65、Xu, X.; Cao, Z. X.*; Zhang, Q. E.; J. Phys. Chem. A. 2007, 111, 5775.

DOI: http://dx.doi.org/10.1021/jp071975+

What Definitively Controls the Photochemical Activity of Methylbenzonitriles and Methylanisoles? Insights from Theory

66、Xu, X.; Cao, Z. X.*; Zhang, Q. E.; J. Phys. Chem. A. 2006, 110: 1740.

DOI: http://dx.doi.org/10.1021/jp055695a

Computational Characterization of Low-Lying States and Intramolecular Charge Transfers in N-Phenylpyrrole and the Planar-Rigidized Fluorazene

67、Xu, X.; Cao, Z. X.*; Zhang, Q. E.; J. Chem. Phys. 2005, 122, 194305.

DOI: http://dx.doi.org/10.1063/1.1895673

Theoretical Study of Photoinduced Singlet and Triplet Excited States of 4-Dimethylaminobenzonitrile and Its Derivatives