1、Zhang, P.; Xu, X.*, J. Chem. Theory Comput. 2025, in press
DOI: https://doi.org/10.1021/acs.jctc.5c00705
Modulation of Electric Field and Interface on Competitive Reaction Mechanisms
2、Zhao, X.; Shu, Y.; Meng, Q.; Bao, J. J.; Xu, X.*; Truhlar, D. G. J. Phys. Chem. A 2025,
Improvement of Fourteen Coupled Global Potential Energy Surfaces of 3A’ States of O + O2
DOI: https://doi.org/10.1021/acs.jpca.5c00464
3、Zhao, X.; Xu, X.*; Xu, H.*, The Astrophysical Journal, 2025, 981, 112
DOI: https://doi.org/10.3847/1538-4357/adb1df
Unimolecular Chemical Kinetics in the Interstellar: Competition of Infrared Radiation and Collision Activation Mechanisms
4、Zhang, P.; Xu, X.*, Langmuir, 2025, 41, 5, 3675–3683
DOI: https://doi.org/10.1021/acs.langmuir.4c05004
Propensity of Water Self-Ions at Air(Oil)-Water Interfaces Revealed by Deep Potential Molecular Dynamics with Enhanced Sampling
5、Zhao, X.; Xu, X.*; Xu, H.*, J. Chem. Phys. 2024, 161, 231101.
DOI: https://doi.org/10.1063/5.0241219
High-temperature non-equilibrium atom–diatom collisional energy transfer
6、Feng, M.; Wang, Y.; Hou, D.; Li, H.; Pang, A.; Xu, X.*; Luo, K. H.*, Fuel 2024, 375, 132628
DOI: https://doi.org/10.1016/j.fuel.2024.132628
Atomistic insights into two-stage combustion of a single boron nanoparticle via reactive molecular dynamics
7、Zhang, P.; Chen, C.; Feng, M.; Sun, C.*; Xu, X.*, Journal of the American Chemical Society 2024, 146, 19537-19546
DOI: https://pubs.acs.org/doi/abs/10.1021/jacs.4c06641
Hydroxide and Hydronium Ions Modulate the Dynamic Evolution of Nitrogen Nanobubbles in Water
8、Zhang, P.; Gardini, A. T.; Xu, X.*; Parrinello, M.*, Journal of Chemical Information and Modeling 2024, 64 (9), 3599-3604
DOI: https://pubs.acs.org/doi/abs/10.1021/acs.jcim.4c00273
Intramolecular and water mediated tautomerism of solvated glycine
9、Zhang, P.; Feng, M.; Xu, X.*, ACS Phys. Chem Au 2024, 4, 4, 336–346
DOI: https://doi.org/10.1021/acsphyschemau.3c00076
Double-Layer Distribution of Hydronium and Hydroxide Ions in the Air–Water Interface
10、Meana-Pañeda, R.; Zheng, J.; …., Zhang, R. M.; Xu, X.*; …, Truhlar, D. G.*, Comput. Phys. Commun. 2024, 294, 108933.
DOI: https://doi.org/10.1016/j.cpc.2023.108933
Polyrate 2023: A computer program for the calculation of chemical reaction rates for polyatomics. New version announcement
Download:https://zenodo.org/records/8309384
11、Zhang, R. M.; Xu, X.*; Truhlar, D. G.*, Comput. Phys. Commun. 2023, 293, 108894.
DOI: https://doi.org/10.1016/j.cpc.2023.108894
TUMME 2023: Tsinghua University Minnesota Master Equation program. New version announcement
Download: https://zenodo.org/records/7943284
12、Yan, L.; Zhang, R. M.; Xu, X.*, Ecotoxicology and Environmental Safety, 2023, 266, 115553.
DOI: https://doi.org/10.1016/j.ecoenv.2023.115553
Theoretical Kinetics studies of isoprene peroxy radical chemistry: The fate of Z-δ-(4-OH, 1-OO)-ISOPOO radical
13、Zhao, X.; Merritt, I. C. D.; Lei, R.; Shu, Y.; Jacquemin, D.; Zhang, L.*; Xu, X.*; Vacher, M.*; Truhlar, D. G.*, J. Chem. Theory Comput. 2023, 19, 6, 1672–1685.
DOI: https://doi.org/10.1021/acs.jctc.3c00813
Nonadiabatic Coupling in Trajectory Surface Hopping: Accurate Time Derivative Couplings by the Curvature-Driven Approximation
14、Han, X.; Xu, X.*, ACS Materials Lett. 2023, 5, 8, 2114-2120.
DOI: https://doi.org/10.1021/acsmaterialslett.3c00457
Indirect Modulation of Cu Atoms Supported on Black Phosphorus for Fast Kinetic Li–S Batteries: A Theoretical Study
15、Chen, W.; Zheng, J.; Bao, J. L.; Truhlar, D. G.*; Xu, X.*, Comput. Phys. Commun. 2023, 288, 108740.
DOI: https://doi.org/10.1016/j.cpc.2023.108740
MSTor 2023: A new version of the computer code for multistructural torsional anharmonicity, now with automatic torsional identification using redundant internal coordinates
16、Yan, L.; Wang, Y.; Zhang, R. M.; He, X.*; Xu, X.*, J. Chem. Theory Comput. 2023, 19, 11, 3284–3302.
DOI: https://doi.org/10.1021/acs.jctc.3c00033
Comprehensive Theoretical Study on Four Typical Intramolecular Hydrogen Shift Reactions of Peroxy Radicals: Multireference Character, Recommended Model Chemistry, and Kinetics
17、Zhao, X.; Shu, Y.; Zhang, L.*; Xu, X.*; Truhlar, D. G.*, J. Chem. Theory Comput. 2023, 19, 6, 1672–1685.
DOI: https://doi.org/10.1021/acs.jctc.2c01260
Direct Nonadiabatic Dynamics of Ammonia with Curvature-Driven Coherent Switching with Decay of Mixing and with Fewest Switches with Time Uncertainty: An Illustration of Population Leaking in Trajectory Surface Hopping Due to Frustrated Hops
18、Han, X.; Xu, X.* J. Mater. Chem. A, 2023,11, 18922-18932.
DOI: https://doi.org/10.1039/D3TA03366J
Mechanistic insights into trisulfur radical generation in lithium–sulfur batteries
19、Chen, W.; Zhang, P.; Truhlar, D. G.; Zheng, J.; Xu, X.*, J. Chem. Theory Comput. 2022, 18, 7671-7682
DOI: https://doi.org/10.1021/acs.jctc.2c00952
Identification of Torsional Modes in Complex Molecules Using Redundant Internal Coordinates: The Multistructural Method with Torsional Anharmonicity with a Coupled Torsional Potential and Delocalized Torsions
20、Chen, W.; Zhang, P.; Truhlar, D. G.; Zheng, J.; Xu, X.*, J. Chem. Theory Comput. 2023, 19, 9, 2697–2698.
DOI: https://doi.org/10.1021/acs.jctc.3c00272
Correction to “Identification of Torsional Modes in Complex Molecules Using Redundant Internal Coordinates: The Multistructural Method with Torsional Anharmonicity with a Coupled Torsional Potential and Delocalized Torsions”
21、Zhang, Z.; Xu, X.*, ACS Appl. Mater, Interfaces 2022, 14 (25), 28900-28910
DOI: https://doi.org/10.1021/acsami.2c05649
Mechanistic Study on Enhanced Electrocatalytic Nitrogen Reduction Reaction by Mo Single Cluster Supported on MoS2
22、Zhang, R. M.; Xu, X.*; Truhlar, D. G.*, J. Phys. Chem. A 2022, 126, 3006-3014
DOI: https://doi.org/10.1021/acs.jpca.1c09905
Observing Intramolecular Vibrational Energy Redistribution via the Short-Time Fourier Spectrum
23、Zhang, R. M.; Chen, W.; Truhlar, D. G.*; Xu, X.* Faraday Discussions, 2022, 238, 431-460
DOI: https://doi.org/10.1039/D2FD00024E
Master Equation Study of Hydrogen Abstraction from HCHO by OH via a Chemically Activated Intermediate
DOI: https://doi.org/10.1039/d2fd90048c
Collisional energy transfer: General discussion, Faraday Discussions, 2022, 238, 121-143
DOI: https://doi.org/10.1039/d2fd90050e
The master equation: General discussion, Faraday Discussions, 2022, 238, 529-574
24、Zhang, Z.; Xu, X.* Energy & Environmental Materials 2022, in production.
DOI: https://doi.org/10.1002/eem2.12348
Mechanistic Insights into Electrocatalytic Nitrogen Reduction Reaction on the Pd-W Heteronuclear Diatom Supported on C2N Monolayer: Role of H Pre-Adsorption
25、Feng, M.; Ma, X.; Zhang, Z., Luo, K.; Sun, C. *; Xu, X.*, Soft Matter, 2022, 18, 2968-2978.
DOI: https://doi.org/10.1039/D2SM00181K
How Sodium Chloride Extends Lifetime of Bulk Nanobubbles in Water
26、Li, Y.; Guo, X.; Zhang, R. M.; Zhang, H.; Zhang, X.*; Xu, X.*, Phys. Chem. Chem. Phys. 2022, 24,8672-8682.
DOI: https://doi.org/10.1039/D2CP00396A
Pressure-Dependent Kinetics of o-Xylene Reaction with OH Radical
27、Zhang, Z.; Xu, X.*, Advanced Theory and Simulations, 2022, 5, 2100579
DOI: https://doi.org/10.1002/adts.202100579
g-C3N4-Supported Metal-Pair Catalysts toward Efficient Electrocatalytic Nitrogen Reduction: A Computational Evaluation
28、Zhang, R. M.; Xu, X.*; Truhlar, D. G.* Comput. Phys. Commun. 2022, 270, 108140.
DOI: https://doi.org/10.1016/j.cpc.2021.108140
TUMME: Tsinghua University Minnesota Master Equation program
Download:https://comp.chem.umn.edu/tumme/
29、Zhang, R. M.; Xu, X.*; Truhlar, D. G.* J. Phys. Chem. A 2021, 125, 6303-6313.
DOI: https://doi.org/10.1021/acs.jpca.1c03845
Energy Dependence of Ensemble-Averaged Energy Transfer Moments and Its Effect on Competing Decomposition Reactions
(Special Virtual Issue entitled "125 Years of The Journal of Physical Chemistry")
30、Gao, G. L.; Fleming, D. G.; Truhlar, D. G.*; Xu, X.* J. Phys. Chem. Lett. 2021, 12, 4154-4159.
DOI: https://doi.org/10.1021/acs.jpclett.1c01229
Large Anharmonic Effects on Tunneling and Kinetics: Reaction of Propane with Muonium
31、Han, X.; Zhang, Z.; Xu, X.* J. Mater. Chem. A 2021, 9, 12225-12235.
DOI: https://dx.doi.org/10.1039/D1TA01948A
Single Atom Catalysts Supported on N-doped Graphene toward Fast Kinetics in Li-S Batteries: A Theoretical Study
32、Chen, W.; Guo, X.; Chen, L.; Zhang, R.; Li, Y.; Feng, H.; Xu, X.*; Zhang, X.* Phys. Chem. Chem. Phys. 2021, 23, 7333-7342.
DOI: https://dx.doi.org/10.1039/d1cp00386k
A Kinetics Study on Hydrogen Abstraction Reactions of Cyclopentane by Hydrogen, Methyl, and Ethyl Radicals
33、Li, Y.; Javoy, S.; Mevel, R.*; Xu, X.* Phys. Chem. Chem. Phys. 2021, 23, 585-596.
DOI: https://dx.doi.org/10.1039/d0cp05131d
A Chemically Consistent Rate Constant for the Reaction of Nitrogen Dioxide with the Oxygen Atom
34、Zhang, Z.; Xu, X.* ACS Appl. Mater, Interfaces 2020, 12, 56987-56994.
DOI: https://dx.doi.org/10.1021/acsami.0c16362
Efficient Heteronuclear Diatom Electrocatalyst for Nitrogen Reduction Reaction: Pd–Nb Diatom Supported on Black Phosphorus
35、Zhang, R. M.; Xu, X.*; Truhlar, D. G.* J. Am. Chem. Soc. 2020, 142, 16064-16071.
DOI: https://doi.org/10.1021/jacs.0c07692
Selected as JACS Spotlight: J. Am. Chem. Soc. 2020, 142, 16511-16512.
DOI: https://dx.doi.org/10.1021/jacs.0c10087
Low-Pressure Limit of Competitive Unimolecular Reactions
36、Wu, J.; Gao, L. G.; Varga, Z.; Xu, X.*; Ren, W.*; Truhlar, D. G.* Angew. Chem. Int. Ed. 2020, 132, 10918-10922.
DOI: https://doi.org/10.1002/anie.202001065
Water Catalysis of the Reaction of Methanol with OH Radical in the Atmosphere is Negligible
37、Zhang, Z.; Yang, K. R.; Xu, X.* J. Phys. Chem. C 2019, 124, 256-266.
DOI: http://dx.doi.org/10.1021/acs.jpcc.9b04872
Understanding the Separation Mechanism of C2H6/C2H4 on Zeolitic Imidazolate Framework ZIF-7 by Periodic DFT Investigations
38、Gao, L. G.; Zhang, R.-M; Xu, X.*; Truhlar, D. G.* J. Am. Chem. Soc. 2019, 141, 13635-13642.
DOI: https://pubs.acs.org/doi/10.1021/jacs.9b06506
Quantum effects on H2 diffusion in Zeolite RHO: Inverse kinetic isotope effect for sieving
39、Guo, X.; Zhang, R.-M; Gao, L. G.; Zhang, X.*; Xu, X.* Phys. Chem. Chem. Phys. 2019, 21, 24458-24468.
DOI: http://dx.doi.org/10.1039/c9cp04809j
Computational kinetics of the hydrogen abstraction reactions of n-propanol and iso-propanol by OH radical
40、Zhang, R.-M.; Truhlar, D. G.; Xu, X.* Research. 2019, ID5373785.
DOI: https://doi.org/10.34133/2019/5373785
Kinetics of the toluene reaction with OH radical
41、Gao, L. G.; Zheng, J.; Fernández-Ramos, A.; Truhlar, D. G.*; Xu, X.* J. Am. Chem. Soc. 2018, 140, 2906.
DOI: http://pubs.acs.org/doi/10.1021/jacs.7b12773
Kinetics of the Methanol Reaction with OH at Interstellar, Atmospheric, and Combustion Temperatures
42、Zhang, H.; Zhang, X.*; Truhlar, D. G.; Xu, X.* J. Phys. Chem. A. 2017, 121, 9033.
DOI: http://dx.doi.org/10.1021/acs.jpca.7b09374
Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory
43、Li, X.; Xu, X.*; You, X.*; Truhlar, D. G.* J. Phys. Chem. A. 2016, 120, 4025.
DOI: http://dx.doi.org/10.1021/acs.jpca.6b02600
Benchmark Calculations for Bond Dissociation Enthalpies of Unsaturated Methyl Esters and the Bond Dissociation Enthalpies of Methyl Linolenate
44、Xu, X.; Zheng, J.; Truhlar, D. G.* J. Am. Chem. Soc. 2015, 137, 8026.
DOI: http://dx.doi.org/10.1021/jacs.5b04845
Selected as JACS Spotlight: J. Am. Chem. Soc. 2015, 137, 8311.
DOI: http://dx.doi.org/10.1021/jacs.5b06634
Ultraviolet Absorption Spectrum of Malonaldehyde in Water Is Dominated by Solvent-Stabilized Conformations
45、Li, S. L.; Xu, X.; Truhlar, D. G.* Phys. Chem. Chem. Phys. 2015, 17, 20093.
DOI: http://dx.doi.org/10.1039/C5CP02461G
Computational Simulation and Interpretation of the Low-Lying Excited Electronic States and Electronic Spectrum of Thioanisole
46、Xu, X.; Zhang, W.; Tang, M.; Truhlar, D. G.* J. Chem. Theory Comput. 2015, 11, 2036.
DOI: http://dx.doi.org/10.1021/acs.jctc.5b00081
Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition metals?
47、Bao, J.; Yu, H. S.; Duanmu K.; Makeev, M.; Xu, X.; Truhlar, D. G.* ACS. Catal. 2015, 5, 2070.
DOI: http://dx.doi.org/10.1021/cs501675t
Density Functional Theory of the Water Splitting Reaction on Fe(0): Comparison of Local and Nonlocal Correlation Functionals
48、Xu, X.; Zheng, J.; Yang, K. R.; Truhlar, D. G.* J. Am. Chem. Soc. 2014, 136, 16378.
DOI: http://dx.doi.org/10.1021/ja509016a
Photodissociation Dynamics of Phenol: Multistate Trajectory Simulations including Tunneling
49、Wang, B.; Yang, K. R.; Xu, X.; Isegawa, M.; Leverentz, H. R.; and Truhlar, D. G.* Acc. Chem. Res. 2014, 47, 2731.
DOI: http://dx.doi.org/10.1021/ar500068a
Quantum Mechanical Fragment Methods Based on Partitioning Atoms or Partitioning Coordinates
50、Xu, X.; Yang, K. R.; and Truhlar, D. G.*, J. Chem. Theory Comput. 2014, 10, 2070.
DOI: http://dx.doi.org/10.1021/ct500128s
Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms
51、Zheng, J.; Xu, X.; Meana-Pañeda, R.; Truhlar, D. G*., Chem. Sci. 2014, 5, 2091.
DOI: http://dx.doi.org/10.1039/C3SC53290A
Army Ants Tunneling for Classical Simulations
52、Li, S. H.; Marenich, A. V.; Xu, X.; and Truhlar, D. G.*, J. Phys. Chem. Lett. 2014, 5, 322.
DOI: http://dx.doi.org/10.1021/jz402549p
Configuration Interaction-Corrected Tamm-Dancoff Approximation: A Time-Dependent Density Functional Method with the Correct Dimensionality of Conical Intersections.
53、Xu, X.; Yang, K. R.; Truhlar, D. G.* J. Chem. Theory Comput. 2013, 9, 3612.
DOI: http://dx.doi.org/10.1021/ct400447f
Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol
54、Xu, X.; Gozem, S.; Olivucci, M.; Truhlar, D. G.* J. Phys. Chem. Lett. 2013, 4, 253.
DOI: http://dx.doi.org/10.1021/jz301935x
Combined Self-Consistent-Field and Spin-Flip Tamm-Dancoff Density Functional Approach to Potential Energy Surfaces for Photochemistry
55、Xu, X.; Yu, T.; Papajak, E.; and Truhlar, D. G.*, J. Phys. Chem. A 2012, 116, 10480.
DOI: http://dx.doi.org/10.1021/jp307504p
Multi-Structural Variational Transition State Theory: Kinetics of the Hydrogen Abstraction from Carbon-2 of 2-Methyl-1-propanol by Hydroperoxyl Radical Including All Structures and Torsional Anharmonicity
56、Xu, X.; Papajak, E.; Zheng, J.; and Truhlar, D. G.*, Phys. Chem. Chem. Phys. 2012, 14, 4204.
DOI: http://dx.doi.org/10.1039/c2cp23692c
Multi-Structural Variational Transition State Theory: Kinetics of the 1,5-Hydrogen shift Isomerization of 1-Butoxyl Radical Including All Structures and Torsional Anharmonicity
57、Xu, X.; Truhlar, D. G.*, J. Chem. Theory Comput. 2012, 8, 80.
DOI: http://dx.doi.org/10.1021/ct200558j
Performance of Effective Core Potentials for Density functional Calculations on 3d Transition Metals
58、Xu, X.; Truhlar, D. G.*, J. Chem. Theory Comput. 2011, 7, 2766.
DOI: http://dx.doi.org/10.1021/ct200234r
Accuracy of Effective Core Potentials and Basis Sets for Density Functional Calculations, Including Relativistic Effects, As Illustrated by Calculations on Arsenic Compounds
59、Papajak, E.; Zheng, J.; Xu, X.; Leverentz, H. R. and Truhlar, D. G.* J. Chem. Theory Comput. 2011, 7, 3027.
DOI: http://dx.doi.org/10.1021/ct200106a
Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions
60、Xu, X.; Alecu, I. M. and Truhlar, D. G.* J. Chem. Theory Comput. 2011, 7, 1667.
DOI: http://dx.doi.org/10.1021/ct2001057
How Well Can Modern Density Functionals Predict Internuclear Distances at Transition States?
61、Zheng, J.; Xu, X.; Truhlar D. G.* Theor. Chem. Acc. 2011, 128, 295.
DOI: http://dx.doi.org/10.1007/s00214-010-0846-z
Minimally augmented Karlsruhe Basis Sets
62、Xu, X.; Zilberg, S.; Haas, Y.* J. Phys. Chem. A. 2010, 114, 4924.
DOI: http://dx.doi.org/10.1021/jp911250g
Electrophilic Aromatic Substitution: the Role of Electronically Excited States.
63、Xu, X.; Kahan, A.; Zilberg, S.; Haas, Y.*; J. Phys. Chem. A. 2009, 113, 9779.
DOI: http://dx.doi.org/10.1021/jp904097k
Photo-Reactivity of a Push-Pull Merocyanine in Static Electric Fields: a Three State Model of Isomerization Reactions Involving Conical Intersections
64、Xu, X.; Zhang, R. Q.*; Cao, Z. X.*; Zhang, Q. E.; J. Theor. Comput. Chem. 2008, 7, 719.
DOI: http://dx.doi.org/10.1142/S0219633608004088
Intramolecular Charge Transfer and Photoisomerization of the DCM Styrene Dye: A Theoretical Study
65、Xu, X.; Cao, Z. X.*; Zhang, Q. E.; J. Phys. Chem. A. 2007, 111, 5775.
DOI: http://dx.doi.org/10.1021/jp071975+
What Definitively Controls the Photochemical Activity of Methylbenzonitriles and Methylanisoles? Insights from Theory
66、Xu, X.; Cao, Z. X.*; Zhang, Q. E.; J. Phys. Chem. A. 2006, 110: 1740.
DOI: http://dx.doi.org/10.1021/jp055695a
Computational Characterization of Low-Lying States and Intramolecular Charge Transfers in N-Phenylpyrrole and the Planar-Rigidized Fluorazene
67、Xu, X.; Cao, Z. X.*; Zhang, Q. E.; J. Chem. Phys. 2005, 122, 194305.
DOI: http://dx.doi.org/10.1063/1.1895673
Theoretical Study of Photoinduced Singlet and Triplet Excited States of 4-Dimethylaminobenzonitrile and Its Derivatives